UTFT

Arduino and chipKit Universal TFT display library

Manual

Rinky-Dink Electronics

http://www._RinkyDinkElectronics.com/ (C)2014 Rinky-Dink Electronics, Henning Karlsen



Introduction:

This library was originally the continuation of my ITDBO2_Graph, ITDBO2_Graphl6 and RGB_GLCD
libraries for Arduino and chipKit. As the number of supported display modules and controllers
started to increase | felt it was time to make a single, universal library as it will be much
easier to maintain in the future.

Basic functionality of this library was origianlly based on the demo-code provided by ITead
studio (for the 1TDBO2 modules) and NKC Electronics (for the RGB GLCD module/shield).

This library supports a number of 8bit, 16bit and serial graphic displays, and will work with
both Arduino and chipKit boards. For a full list of tested display modules and controllers,
see the document UTFT_Supported_display_modules_&_ controllers._pdf.

You can always find the latest version of the library at http://www.RinkyDinkElectronics.com/

For version information, please refer to version.txt.

IMPORTANT:

When using 8bit and 16bit display modules there are some requirements you must adhere to.
These requirements can be found in the document UTFT_Requirements.pdf.
There are no special requirements when using serial displays.

Since most people have only one or possibly two different display modules a lot of memory has
been wasted to keep support for many unneeded controller chips.

As of vl.1 you now have the option to easily remove this unneeded code from the library. By
disabling the controllers you don"t need you can reduce the memory footprint of the library by
several Kb. For more information, please refer to memorysaver.h.

If you are using the “AqualLEDSource All in One Super Screw Shield” on a chipKit Max32, please
read the comment in hardware/pic32/HW_PIC32_defines.h

IT you are using the “CTE TFT LCD/SD Shield for Arduino Due” or the “ElecHouse TFT LCD Screen
Shield for Arduino DUE /Taijiuino”, please read the comment in hardware/arm/HW_ARM_defines.h

8 bit display shields designed for use on Arduino Uno (and similarly sized boards) can now be
used on Arduino Megas. Please read the comment in hardware/avr/HW_AVR_defines.h

The 7 display modules have not been tested on the chipKit boards due to the high current
requirement for the LED backlight.

This library is licensed under a CC BY-NC-SA 3.0 (Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported) License.

For more information see: http://creativecommons.org/licenses/by-nc-sa/3.0/

Library Manual: UTFT Page 1




DEFINED LITERALS:

Alignment
For use with print(), printNumI() and printNumF()
LEFT: O
RIGHT: 9999

CENTER: 9998

Orientation
For use with InitLCD()

PORTRAIT: O
LANDSCAPE: 1

VGA Colors
Predefined colors for use with setColor() and setBackColor()

VGA_BLACK VGA_SILVER VGA_GRAY VGA_WHITE
VGA_MAROON VGA_PURPLE

\ \
VGA_GREEN \ VGA_LIME VGA_OLIVE VGA_YELLOW

VGA_NAVY VGA_BLUE VGA_TEAL VGA_AQUA

VGA_TRANSPARENT (only valid for setBackColor())

Display model
For use with UTFT()

Please see UTFT_Supported_display_modules_&_ controllers.pdf

INCLUDED FONTS:

SmallFont

Charactersize: 8x12 pixels
Number of characters: 95

BigFont

Charactersize: 16x16 pixels
Number of characters: 95

SevenSegNumFont

Charactersize: 32x50 pixels
Number of characters: 10

Library Manual: UTFT Page 2



FUNCTIONS:

UTFT(Model, RS, WR, CS, RST[, ALE]);
The main class constructor when using 8bit or 16bit display modules.

Parameters: Model: See the separate document for the supported display modules
RS: Pin for Register Select
WR: Pin for Write
Cs: Pin for Chip Select
RST: Pin for Reset
ALE: <optional> Only used for latched 16bit shields

Pin for Latch signal

Usage: UTFT myGLCD(1TDB32S,19,18,17,16); // Start an instance of the UTFT class

UTFT(Model, SDA, SCL, CS, RST[, RS]);
The main class constructor when using serial display modules.

Parameters: Model: See the separate document for the supported display modules
SDA: Pin for Serial Data
SCL: Pin for Serial Clock
Cs: Pin for Chip Select
RST: Pin for Reset
RS: <optional> Only used for 5pin serial modules

Pin for Register Select

Usage: UTFT myGLCD(1TDB18SP,11,10,9,12,8); // Start an instance of the UTFT class

InitLCD([orientation]);
Initialize the LCD and set display orientation.

Parameters: Orientation: <optional>
PORTRAIT
LANDSCAPE (default)
Usage: myGLCD.initLCD(); 7/ Initialize the display
Notes: This will reset color to white with black background. Selected font will be reset to none.

getDisplayXSize();
Get the width of the screen in the current orientation.

Parameters: None
Returns: Width of the screen in the current orientation in pixels
Usage: Xsize = myGLCD.getDisplayXSize(); // Get the width

getDisplayYSize();
Get the height of the screen in the current orientation.

Parameters: None
Returns: Height of the screen in the current orientation in pixels
Usage: Ysize = myGLCD.getDisplayYSize(); // Get the height

Library Manual: UTFT Page 3




IcdOFf(Q);
Turn off the LCD. No commands will be executed until a lcdOn(); is sent.

Parameters: None
Usage: myGLCD. IcdOFF(); 7/ Turn off the lcd
Notes: This function is currently only supported on PCF8833 and CPLD-based displays.

CPLD-based displays will only turn off the backlight. It will accept further commands/writes.

lcdOn();
Turn on the LCD after issuing a lcdOff()-command.
Parameters: None
Usage: myGLCD. IcdOn(); /7 Turn on the lcd
Notes: This function is currently only supported on PCF8833 and CPLD-based displays.

CPLD-based displays will only turn on the backlight.

setContrast(c);
Set the contrast of the display.
Parameters: c: Contrast-level (0-64)
Usage: myGLCD.setContrast(64); // Set contrast to full (default)
Notes: This function is currently only supported on PCF8833-based displays

setBrightness(br);
Set the brightness of the display backlight.

Parameters: br: Brightness-level (0-16)
Usage: myGLCD.setBrightness(16); // Set brightness to maximum (default)
Notes: This function is currently only supported on CPLD-based displays

setDisplayPage(pg);
Set which memory page to display.

Parameters: pg: Page (0-7) (0 is default)
Usage: myGLCD.setDisplayPage(4); // Display page 4
Notes: This function is currently only supported on CPLD-based displays

setWritePage(pg);
Set which memory page to use for subsequent display writes.

Parameters: pg: Page (0-7) (O is default)
Usage: myGLCD.setWritePage(2); // Use page 2 for subsequent writes
Notes: This function is currently only supported on CPLD-based displays

Library Manual: UTFT Page 4



clrScr();
Clear the screen. The background-color will be set to black.

Parameters: None
Usage: myGLCD.clrScr(); // Clear the screen

fillScr(r, g, b);
Fill the screen with a specified color.

Parameters: r: Red component of an RGB value (0-255)
g: Green component of an RGB value (0-255)
b: Blue component of an RGB value (0-255)
Usage: myGLCD.fillScr(255,127,0); // Fill the screen with orange

fillScr(color);
Fill the screen with a specified pre-calculated RGB565 color.

Parameters: color: RGB565 color value
Usage: myGLCD. fillScr(VGA_RED); // Fill the screen with red

setColor(r, g, b);
Set the color to use for all draw*, fill* and print commands.

Parameters: r: Red component of an RGB value (0-255)
g: Green component of an RGB value (0-255)
b: Blue component of an RGB value (0-255)
Usage: myGLCD.setColor(0,255,255); // Set the color to cyan

setColor(color);
Set the specified pre-calculated RGB565 color to use for all draw*, fill* and print commands.

Parameters: color: RGB565 color value

Usage: myGLCD.setColor(VGA_AQUA); // Set the color to aqua
getColor();

Get the currently selected color.

Parameters: None

Returns: Currently selected color as a RGB565 value (word)

Usage: Color = myGLCD.getColor(); // Get the current color

setBackColor(r, g, b);
Set the background color to use for all print commands.

Parameters: r: Red component of an RGB value (0-255)
g: Green component of an RGB value (0-255)
b: Blue component of an RGB value (0-255)
Usage: myGLCD.setBackColor(255,255,255); // Set the background color to white

setBackColor(color);
Set the specified pre-calculated RGB565 background color to use for all print commands.

Parameters: color: RGB565 color value
Usage: myGLCD.setBackColor(VGA_LIME); // Set the background color to lime

getBackColor();
Get the currently selected background color.

Parameters: None
Returns: Currently selected background color as a RGB565 value (word)
Usage: BackColor = myGLCD.getBackColor(); // Get the current background color

Library Manual: UTFT Page 5



drawPixel(X, y);
Draw a single pixel.

Parameters: X: x-coordinate of the pixel
y: y-coordinate of the pixel
Usage: myGLCD.drawPixel (119,159); // Draw a single pixel

drawLine(x1, y1, X2, y2);
Draw a line between two points.

Parameters: Xx1: x-coordinate of the start-point
yl: y-coordinate of the start-point
X2: x-coordinate of the end-point
y2: y-coordinate of the end-point
Usage: myGLCD.drawLine(0,0,239,319); // Draw a diagonal line

drawRect(x1, y1, X2, y2);
Draw a rectangle between two points.

Parameters: x1: x-coordinate of the start-corner
yl: y-coordinate of the start-corner
x2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner
Usage: myGLCD.drawRect(119,159,239,319); // Draw a rectangle

drawRoundRect(x1, y1, X2, y2);
Draw a rectangle with slightly rounded corners between two points. The minimum size is 5 pixels in both directions. If a
smaller size is requested the rectangle will not be drawn.

Parameters: x1: x-coordinate of the start-corner
yl: y-coordinate of the start-corner
X2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner
Usage: myGLCD.drawRoundRect(0,0,119,159); // Draw a rounded rectangle

fillRect(x1, y1, x2, y2);
Draw a filled rectangle between two points.

Parameters: x1: x-coordinate of the start-corner
yl: y-coordinate of the start-corner
X2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner
Usage: myGLCD. fillRect(119,0,239,159); // Draw a filled rectangle

fillRoundRect(x1, y1, X2, y2);
Draw a filled rectangle with slightly rounded corners between two points. The minimum size is 5 pixels in both directions. If a
smaller size is requested the rectangle will not be drawn.

Parameters: x1: x-coordinate of the start-corner
yl: y-coordinate of the start-corner
Xx2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner
Usage: myGLCD. filIRoundRect(0,159,119,319); // Draw a filled, rounded rectangle

drawCircle(x, y, radius);
Draw a circle with a specified radius.

Parameters: Xz x-coordinate of the center of the circle
y: y-coordinate of the center of the circle
radius: radius of the circle in pixels
Usage: myGLCD.drawCircle(119,159,20); // Draw a circle with a radius of 20 pixels

fillCircle(Xx, y, radius);
Draw a filled circle with a specified radius.

Parameters: X: x-coordinate of the center of the circle
y: y-coordinate of the center of the circle
radius: radius of the circle in pixels
Usage: myGLCD.fillCircle(119,159,10); // Draw a filled circle with a radius of 10 pixels

Library Manual: UTFT Page



print(st, x, y[, deg])
Print a string at the specified coordinates.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: st: the string to print
X: x-coordinate of the upper, left corner of the first character
y: y-coordinate of the upper, left corner of the first character

deg: <optional>
Degrees to rotate text (0-359). Text will be rotated around the upper left corner.
Usage: myGLCD.print(“Hello, World!”,CENTER,0); // Print “Hello, World!”
Notes: CENTER and RIGHT will not calculate the coordinates correctly when rotating text.
The string can be either a char array or a String object

printNumI(num, X, y[, length[, filler]]);
Print an integer number at the specified coordinates.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: num: the value to print (-2,147,483,648 to 2,147,483,647) INTEGERS ONLY
X: x-coordinate of the upper, left corner of the first digit/sign
y: y-coordinate of the upper, left corner of the first digit/sign

length: <optional>
minimum number of digits/characters (including sign) to display

filler: <optional>
filler character to use to get the minimum length. The character will be inserted in front
of the number, but after the sign. Default is " " (space).

Usage: myGLCD.printNuml (num,CENTER,0); // Print the value of “num”

printNumF(num, dec, X, y[, divider[, length[, filler]11);
Print a floating-point number at the specified coordinates.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.
WARNING: Floating point numbers are not exact, and may yield strange results when compared. Use at your own discretion.

Parameters: num: the value to print (See note)
dec: digits in the fractional part (1-5) O is not supported. Use printNuml() instead.
Xz x-coordinate of the upper, left corner of the first digit/sign
y: y-coordinate of the upper, left corner of the first digit/sign

divider: <Optional>
Single character to use as decimal point. Default is .~

length: <optional>
minimum number of digits/characters (including sign) to display
filler: <optional>

Filler character to use to get the minimum length. The character will be inserted in front
of the number, but after the sign. Default is " " (space).

Usage: myGLCD.printNumF(num, 3, CENTER,0); // Print the value of “num” with 3 fractional digits

Notes: Supported range depends on the number of fractional digits used.
Approx range is +/- 2*(10"°(9-dec))

setFont(fontname);
Select font to use with print(), printNumI() and printNumF().

Parameters: fontname: Name of the array containing the font you wish to use

Usage: myGLCD.setFont(BigFont); // Select the font called BigFont

Notes: You must declare the font-array as an external or include it in your sketch.
getFont();

Get the currently selected font.

Parameters: None
Returns: Currently selected font
Usage: CurrentFont = myGLCD.getFont(); // Get the current font

getFontXsize();
Get the width of the currently selected font.

Parameters: None
Returns: Width of the currently selected font in pixels
Usage: Xsize = myGLCD.getFontXsize (); // Get font width

getFontYsize();
Get the height of the currently selected font.

Parameters: None
Returns: Height of the currently selected font in pixels
Usage: Ysize = myGLCD.getFontYsize (); // Get font height

Library Manual: UTFT Page 7



drawBitmap (X, y, sx, sy, data[, scale]);

Draw a bitmap on the screen.

Parameters:

Usage:
Notes:

X: x-coordinate of the upper, left corner of the bitmap
y: y-coordinate of the upper, left corner of the bitmap
SX: width of the bitmap in pixels
sy: height of the bitmap in pixels

data: array containing the bitmap-data
scale: <optional>

Scaling factor. Each pixel in the bitmap will be drawn as <scale>x<scale> pixels on screen.
myGLCD.drawBitmap(0, 0, 32, 32, bitmap); // Draw a 32x32 pixel bitmap
You can use the online-tool “ImageConverter 565” or “ImageConverter565.exe” in the Tools-folder to
convert pictures into compatible arrays. The online-tool can be found on my website.
Requires that you #include <avr/pgmspace.h> when using an Arduino other than Arduino Due.

drawBitmap (X, y, sX, sy, data, deg, rox, roy);

Draw a bitmap on the screen with rotation.

Parameters:

Usage:

Notes:

Xz x-coordinate of the upper, left corner of the bitmap

y: y-coordinate of the upper, left corner of the bitmap

SX: width of the bitmap in pixels

sy: height of the bitmap in pixels

data: array containing the bitmap-data

deg: Degrees to rotate bitmap (0-359)

rox: x-coordinate of the pixel to use as rotational center relative to bitmaps upper left corner
roy: y-coordinate of the pixel to use as rotational center relative to bitmaps upper left corner
myGLCD.drawBitmap(50, 50, 32, 32, bitmap, 45, 16, 16); // Draw a bitmap rotated 45 degrees around
its center

You can use the online-tool “ImageConverter 565” or “ImageConverter565.exe” in the Tools-folder to
convert pictures into compatible arrays. The online-tool can be found on my website.

Requires that you #include <avr/pgmspace.h> when using an Arduino other than Arduino Due.

Library Manual: UTFT

Page 8



